Geotalea toluenoxydans TMJ1 is an anaerobe, mesophilic, Gram-negative bacterium that was isolated from sludge of a monitoring well at a tar-oil contaminated aquifer.
Gram-negative rod-shaped anaerobe mesophilic genome sequence 16S sequence Bacteria|
|
| Domain Bacteria |
| Phylum Pseudomonadota |
| Class Deltaproteobacteria |
| Order Desulfuromonadales |
| Family Geobacteraceae |
| Genus Geotalea |
| Species Geotalea toluenoxydans |
| Full scientific name Geotalea toluenoxydans (Kunapuli et al. 2010) Waite et al. 2020 |
| Synonyms (1) |
| @ref | Name | Growth | Medium link | |
|---|---|---|---|---|
| 8065 | GEOANAEROBACTER MEDIUM (DSMZ Medium 838) | Medium recipe provided by DSMZ |
| Cat1 | Cat2 | Cat3 | |
|---|---|---|---|
| #Engineered | #Contamination | #Oil (Fuel) | |
| #Engineered | #Industrial | #Oil reservoir | |
| #Environmental | #Aquatic | - | |
| #Environmental | #Terrestrial | #Mud (Sludge) |
Global distribution of 16S sequence EU711072 (>99% sequence identity) for Geobacter from Microbeatlas ![]()
| @ref | Description | Accession | Length | Database | NCBI tax ID | |
|---|---|---|---|---|---|---|
| 8065 | Geobacter toluenoxydans strain TMJ1 16S ribosomal RNA gene, partial sequence | EU711072 | 1440 | 1294260 |
| @ref | Trait | Model | Prediction | Confidence in % | In training data |
|---|---|---|---|---|---|
| 125439 | spore_formation | BacteriaNetⓘ | no | 97.20 | no |
| 125439 | motility | BacteriaNetⓘ | no | 61.40 | no |
| 125439 | gram_stain | BacteriaNetⓘ | negative | 98.40 | no |
| 125439 | oxygen_tolerance | BacteriaNetⓘ | anaerobe | 84.70 | no |
| @ref | Trait | Model | Prediction | Confidence in % | In training data |
|---|---|---|---|---|---|
| 125438 | gram-positive | gram-positiveⓘ | no | 96.47 | no |
| 125438 | anaerobic | anaerobicⓘ | yes | 75.03 | no |
| 125438 | spore-forming | spore-formingⓘ | no | 87.19 | no |
| 125438 | aerobic | aerobicⓘ | no | 81.52 | no |
| 125438 | thermophilic | thermophileⓘ | no | 86.80 | yes |
| 125438 | flagellated | motile2+ⓘ | yes | 68.41 | no |
| Topic | Title | Authors | Journal | DOI | Year | |
|---|---|---|---|---|---|---|
| Phylogeny | Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. | Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU | Int J Syst Evol Microbiol | 10.1099/ijs.0.003525-0 | 2009 |
| #8065 | Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH ; Curators of the DSMZ; DSM 19350 |
| #20215 | Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M.: List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. IJSEM ( DOI 10.1099/ijsem.0.004332 ) |
| #29004 | Barberan A, Caceres Velazquez H, Jones S, Fierer N.: Hiding in Plain Sight: Mining Bacterial Species Records for Phenotypic Trait Information. mSphere 2: 2017 ( DOI 10.1128/mSphere.00237-17 , PubMed 28776041 ) - originally annotated from #25437 (see below) |
| #66792 | Julia Koblitz, Joaquim Sardà, Lorenz Christian Reimer, Boyke Bunk, Jörg Overmann: Automatically annotated for the DiASPora project (Digital Approaches for the Synthesis of Poorly Accessible Biodiversity Information) . |
| #67770 | Japan Collection of Microorganism (JCM) ; Curators of the JCM; |
| #69479 | João F Matias Rodrigues, Janko Tackmann,Gregor Rot, Thomas SB Schmidt, Lukas Malfertheiner, Mihai Danaila,Marija Dmitrijeva, Daniela Gaio, Nicolas Näpflin and Christian von Mering. University of Zurich.: MicrobeAtlas 1.0 beta . |
| #75285 | Reimer, L.C., Lissin, A.,Schober, I., Witte,J.F., Podstawka, A., Lüken, H., Bunk, B.,Overmann, J.: StrainInfo: A central database for resolving microbial strain identifiers . ( DOI 10.60712/SI-ID405747.1 ) |
| #125438 | Julia Koblitz, Lorenz Christian Reimer, Rüdiger Pukall, Jörg Overmann: Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets. 2024 ( DOI 10.1101/2024.08.12.607695 ) |
| #125439 | Philipp Münch, René Mreches, Martin Binder, Hüseyin Anil Gündüz, Xiao-Yin To, Alice McHardy: deepG: Deep Learning for Genome Sequence Data. R package version 0.3.1 . |
You found an error in BacDive? Please tell us about it!
Note that changes will be reviewed and judged. If your changes are legitimate, changes will occur within the next BacDive update. Only proposed changes supported by the according reference will be reviewed. The BacDive team reserves the right to reject proposed changes.
Successfully sent